Categories: FAANG

NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion

Novel view synthesis from a single image requires inferring occluded regions of objects and scenes while simultaneously maintaining semantic and physical consistency with the input. Existing approaches condition neural radiance fields (NeRF) on local image features, projecting points to the input image plane, and aggregating 2D features to perform volume rendering. However, under severe occlusion, this projection fails to resolve uncertainty, resulting in blurry renderings that lack details. In this work, we propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware…
AI Generated Robotic Content

Recent Posts

Spline Path Control v2 – Control the motion of anything without extra prompting! Free and Open Source

Here's v2 of a project I started a few days ago. This will probably be…

17 hours ago

STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis

We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance…

17 hours ago

Cloud quantum computing: A trillion-dollar opportunity with dangerous hidden risks

GUEST: Quantum computing (QC) brings with it a mix of groundbreaking possibilities and significant risks.…

18 hours ago

Truth Social Crashes as Trump Live-Posts Iran Bombing

The social network started experiencing global outages within minutes of Donald Trump posting details of…

18 hours ago

How are these hyper-realistic celebrity mashup photos created?

What models or workflows are people using to generate these? submitted by /u/danikcara [link] [comments]

2 days ago

Beyond GridSearchCV: Advanced Hyperparameter Tuning Strategies for Scikit-learn Models

Ever felt like trying to find a needle in a haystack? That’s part of the…

2 days ago