Categories: FAANG

Optimal Corpus Aware Training for Neural Machine Translation

Corpus Aware Training (CAT) leverages valuable corpus metadata during training by injecting corpus information into each training example, and has been found effective in the literature, commonly known as the “tagging” approach. Models trained with CAT inherently learn the quality, domain and nuance between corpora directly from data, and can easily switch to different inference behavior. To achieve the best evaluation, CAT models pre-define a group of high quality data before training starts which can be error-prone and inefficient. In this work, we propose Optimal Corpus Aware Training…
AI Generated Robotic Content

Recent Posts

VHS filters work great with AI footage (WAN 2.2 + NTSC-RS)

submitted by /u/mtrx3 [link] [comments]

17 hours ago

Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data

Imbalanced datasets are a common challenge in machine learning.

17 hours ago

Unlock global AI inference scalability using new global cross-Region inference on Amazon Bedrock with Anthropic’s Claude Sonnet 4.5

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline…

17 hours ago

Connect Spark data pipelines to Gemini and other AI models with Dataproc ML library

Many data science teams rely on Apache Spark running on Dataproc managed clusters for powerful,…

17 hours ago

The Lenovo Go S Is $120 Off

The upgraded version of the Legion Go S with SteamOS makes for a nice Steam…

18 hours ago

AI could make it easier to create bioweapons that bypass current security protocols

Artificial intelligence is transforming biology and medicine by accelerating the discovery of new drugs and…

18 hours ago