Categories: FAANG

Optimizing Byte-level Representation for End-to-End ASR

In this paper, we propose an algorithm to optimize a byte-level representation for end-to-end (E2E) automatic speech recognition (ASR). Byte-level representation is often used by large scale multilingual ASR systems when the character set of the supported languages is large. The compactness and universality of byte-level representation allow the ASR models to use smaller output and therefore, provides more flexibility. UTF-8 is the most commonly used byte-level representation and has been successfully applied to ASR. However, it is not designed for ASR or any machine learning tasks. By using…
AI Generated Robotic Content

Recent Posts

Unleash the power of generative AI with Amazon Q Business: How CCoEs can scale cloud governance best practices and drive innovation

This post is co-written with Steven Craig from Hearst.  To maintain their competitive edge, organizations…

18 hours ago

Election Denial Conspiracy Theories Are Exploding on X. This Time They’re Coming From the Left

Conspiracy theories about missing votes—which are not, in fact, missing—and something being “not right” are…

19 hours ago

AI-driven mobile robots team up to tackle chemical synthesis

Researchers have developed AI-driven mobile robots that can carry out chemical synthesis research with extraordinary…

19 hours ago

Aquatic robot’s self-learning optimization enhances underwater object manipulation skills

In recent years, roboticists have introduced robotic systems that can complete missions in various environments,…

19 hours ago

Best AI Tools for Business

Overwhelmed by manual tasks and data overload? Streamline your business and boost revenue with the…

2 days ago

Building a Robust Machine Learning Pipeline: Best Practices and Common Pitfalls

In real life, the machine learning model is not a standalone object that only produces…

2 days ago