Categories: FAANG

Personalization of CTC-based End-to-End Speech Recognition Using Pronunciation-Driven Subword Tokenization

Recent advances in deep learning and automatic speech recognition have boosted the accuracy of end-to-end speech recognition to a new level. However, recognition of personal content such as contact names remains a challenge. In this work, we present a personalization solution for an end-to-end system based on connectionist temporal classification. Our solution uses class-based language model, in which a general language model provides modeling of the context for named entity classes, and personal named entities are compiled in a separate finite state transducer. We further introduce a…
AI Generated Robotic Content

Recent Posts

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

21 hours ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago

As AI Grows More Complex, Model Builders Rely on NVIDIA

Unveiling what it describes as the most capable model series yet for professional knowledge work,…

2 days ago