Personalization of CTC-based End-to-End Speech Recognition Using Pronunciation-Driven Subword Tokenization
Recent advances in deep learning and automatic speech recognition have boosted the accuracy of end-to-end speech recognition to a new level. However, recognition of personal content such as contact names remains a challenge. In this work, we present a personalization solution for an end-to-end system based on connectionist temporal classification. Our solution uses class-based language model, in which a general language model provides modeling of the context for named entity classes, and personal named entities are compiled in a separate finite state transducer. We further introduce a…
*Equal Contributors While federated learning (FL) has recently emerged as a promising approach to train machine learning models, it is limited to only preliminary explorations in the domain of automatic speech recognition (ASR). Moreover, FL does not inherently guarantee user privacy and requires the use of differential privacy (DP) for…
Self-supervised features are typically used in place of filter-bank features in speaker verification models. However, these models were originally designed to ingest filter-banks as inputs, and thus, training them on self-supervised features assumes that both feature types require the same amount of learning for the task. In this work, we…
Posted by Cat Armato, Program Manager, Google This week, the 23rd Annual Conference of the International Speech Communication Association (INTERSPEECH 2022) is being held in Incheon, South Korea, representing one of the world’s most extensive conferences on research and technology of spoken language understanding and processing. Over 2,000 experts in…