Categories: FAANG

Personalization of CTC-based End-to-End Speech Recognition Using Pronunciation-Driven Subword Tokenization

Recent advances in deep learning and automatic speech recognition have boosted the accuracy of end-to-end speech recognition to a new level. However, recognition of personal content such as contact names remains a challenge. In this work, we present a personalization solution for an end-to-end system based on connectionist temporal classification. Our solution uses class-based language model, in which a general language model provides modeling of the context for named entity classes, and personal named entities are compiled in a separate finite state transducer. We further introduce a…
AI Generated Robotic Content

Recent Posts

Are there any open source alternatives to this?

I know there are models available that can fill in or edit parts, but I'm…

3 hours ago

The future of engineering belongs to those who build with AI, not without it

As we look ahead, the relationship between engineers and AI systems will likely evolve from…

4 hours ago

The 8 Best Handheld Vacuums, Tested and Reviewed (2025)

Lightweight, powerful, and generally inexpensive, the handheld vacuum is the perfect household helper.

4 hours ago

I really miss the SD 1.5 days

submitted by /u/Dwanvea [link] [comments]

1 day ago

Latent Bridge Matching: Jasper’s Game-Changing Approach to Image Translation

Discover how latent bridge matching, pioneered by the Jasper research team, transforms image-to-image translation with…

1 day ago

A Gentle Introduction to SHAP for Tree-Based Models

Machine learning models have become increasingly sophisticated, but this complexity often comes at the cost…

1 day ago