pfl-research: Simulation Framework for Accelerating Research in Private Federated Learning
Federated Learning (FL) is an emerging ML training paradigm where clients own their data and collaborate to train a global model without revealing any data to the server and other participants. Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly…
At Apple, we believe privacy is a fundamental human right. It’s also one of our core values, influencing both our research and the design of Apple’s products and services. Understanding how people use their devices often helps in improving the user experience. However, accessing the data that provides such insights…
*Equal Contributors While federated learning (FL) has recently emerged as a promising approach to train machine learning models, it is limited to only preliminary explorations in the domain of automatic speech recognition (ASR). Moreover, FL does not inherently guarantee user privacy and requires the use of differential privacy (DP) for…
This paper was accepted for presentation at the International Workshop on Federated Foundation Models (FL@FM-NeurIPS'24), held in conjunction with NeurIPS 2024. Asynchronous protocols have been shown to improve the scalability of federated learning (FL) with a massive number of clients. Meanwhile, momentum-based methods can achieve the best model quality in…