Categories: FAANG

pfl-research: Simulation Framework for Accelerating Research in Private Federated Learning

Federated Learning (FL) is an emerging ML training paradigm where clients own their data and collaborate to train a global model without revealing any data to the server and other participants.
Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly…
AI Generated Robotic Content

Recent Posts

Are there any open source alternatives to this?

I know there are models available that can fill in or edit parts, but I'm…

15 hours ago

The future of engineering belongs to those who build with AI, not without it

As we look ahead, the relationship between engineers and AI systems will likely evolve from…

16 hours ago

The 8 Best Handheld Vacuums, Tested and Reviewed (2025)

Lightweight, powerful, and generally inexpensive, the handheld vacuum is the perfect household helper.

16 hours ago

I really miss the SD 1.5 days

submitted by /u/Dwanvea [link] [comments]

2 days ago

Latent Bridge Matching: Jasper’s Game-Changing Approach to Image Translation

Discover how latent bridge matching, pioneered by the Jasper research team, transforms image-to-image translation with…

2 days ago

A Gentle Introduction to SHAP for Tree-Based Models

Machine learning models have become increasingly sophisticated, but this complexity often comes at the cost…

2 days ago