Categories: FAANG

Projected Language Models: A Large Model Pre-Segmented Into Smaller Ones

This paper has been accepted at the Foundation Models in the Wild workshop at ICML 2024.
Large language models are versatile tools but are not suitable for small inference budgets. Small models have more efficient inference but their lower capacity means that their performance can be good only if one limits their scope to a specialized domain. This paper explores how to get a small language model with good specialized accuracy, even when specialization data is unknown during pretraining. We propose a novel architecture, projected networks (PN). PN is a high capacity network whose parameters…
AI Generated Robotic Content

Recent Posts

Average ComfyUI user

submitted by /u/wutzebaer [link] [comments]

10 hours ago

7 Concepts Behind Large Language Models Explained in 7 Minutes

If you've been using large language models like GPT-4 or Claude, you've probably wondered how…

10 hours ago

Interpolation in Positional Encodings and Using YaRN for Larger Context Window

This post is divided into three parts; they are: • Interpolation and Extrapolation in Sinusoidal…

10 hours ago

How to Combine Scikit-learn, CatBoost, and SHAP for Explainable Tree Models

Machine learning workflows often involve a delicate balance: you want models that perform exceptionally well,…

10 hours ago

Gemini 2.5: Updates to our family of thinking models

Explore the latest Gemini 2.5 model updates with enhanced performance and accuracy: Gemini 2.5 Pro…

10 hours ago

How Anomalo solves unstructured data quality issues to deliver trusted assets for AI with AWS

This post is co-written with Vicky Andonova and Jonathan Karon from Anomalo. Generative AI has…

10 hours ago