Categories: FAANG

Prompting Whisper for Improved Verbatim Transcription and End-to-end Miscue Detection

*Equal Contributors
Identifying mistakes (i.e., miscues) made while reading aloud is commonly approached post-hoc by comparing automatic speech recognition (ASR) transcriptions to the target reading text. However, post-hoc methods perform poorly when ASR inaccurately transcribes verbatim speech. To improve on current methods for reading error annotation, we propose a novel end-to-end architecture that incorporates the target reading text via prompting and is trained for both improved verbatim transcription and direct miscue detection. Our contributions include: first, demonstrating that…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

10 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

10 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

11 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

11 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

1 day ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

1 day ago