Categories: FAANG

Proxy-FDA: Proxy-Based Feature Distribution Alignment for Fine-Tuning Vision Foundation Models Without Forgetting

Vision foundation models pre-trained on massive data encode rich representations of real-world concepts, which can be adapted to downstream tasks by fine-tuning. However, fine-tuning foundation models on one task often leads to the issue of concept forgetting on other tasks. Recent methods of robust fine-tuning aim to mitigate forgetting of prior knowledge without affecting the fine-tuning performance. Knowledge is often preserved by matching the original and fine-tuned model weights or feature pairs. However, such point-wise matching can be too strong, without explicit awareness of the…
AI Generated Robotic Content

Recent Posts

Chroma Radiance, Mid training but the most aesthetic model already imo

submitted by /u/Different_Fix_2217 [link] [comments]

18 hours ago

From human clicks to machine intent: Preparing the web for agentic AI

For three decades, the web has been designed with one audience in mind: People. Pages…

19 hours ago

Best GoPro Camera (2025): Compact, Budget, Accessories

You’re an action hero, and you need a camera to match. We guide you through…

19 hours ago

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

2 days ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

2 days ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

2 days ago