Categories: FAANG

RangeAugment: Efficient Online Augmentation with Range Learning

State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

6 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

6 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

7 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

7 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

1 day ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

1 day ago