Categories: FAANG

Rapid and Scalable Bayesian AB Testing

AB testing aids business operators with their decision making, and is considered the gold standard method for learning from data to improve digital user experiences. However, there is usually a gap between the requirements of practitioners, and the constraints imposed by the statistical hypothesis testing methodologies commonly used for analysis of AB tests. These include the lack of statistical power in multivariate designs with many factors, correlations between these factors, the need of sequential testing for early stopping, and the inability to pool knowledge from past tests. Here, we…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

15 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

15 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

15 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

15 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

16 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

16 hours ago