database and warehouse equation e1663263076454
IoT systems access millions of devices that generate large amounts of streaming data. For some equipment, a single event may prove critical to understanding and responding to the health of the machine in real time, increasing the importance of accurate, reliable data. While real-time data remains important, storing and analyzing the historical data also creates opportunities to improve processes, decision-making and outcomes.
Smart grids, which include components like sensors and smart meters, produce a wealth of telemetry data that can be used for multiple purposes, including:
One way to achieve real-time analytics is with a combination of a time-series database (InfluxDB or TimescaleDB) or a NoSQL database (MongoDB) + a data warehouse + a BI tool:
This architecture raises a question: Why would one use an operational database, and still need a data warehouse? Architects consider such a separation so they can choose a special-purpose database — such as a NoSQL database for document data — or a time-series database (key-value) for low costs and high performance.
However, this separation also creates a data bottleneck — data can’t be analyzed without moving it from an operational data store to the warehouse. Additionally, NoSQL databases are not great at analytics, especially when it comes to complex joins and real-time analytics.
Is there a better way? What if you could get all of the above with a general-purpose, high-performance SQL database? You’d need this type of database to support time-series data, streaming data ingestion, real–time analytics and perhaps even JSON documents.
SingleStoreDB supports fast ingestion with Pipelines (native first class feature) and concurrent analytics for IoT data to enable real-time analytics. On top of SingleStoreDB, you can use IBM® Cognos® Business Intelligence to help you make sense of all of this data. The previously described architecture then simplifies into:
Real-time analytics with SingleStoreDB & IBM Cognos
Pipelines in SingleStoreDB allow you to continuously load data at blazing fast speeds. Millions of events can be ingested each second in parallel from data sources such as Kafka, cloud object storage or HDFS. This means you can stream in structured — as well as unstructured data — for real-time analytics.
But wait, it gets better…
Armis and Infiswift are just a couple of examples of how customers use SingleStoreDB for IoT applications:
Join IBM and SingleStore on Sep 21, 2022 for our webinar “Accelerating Real-Time IoT Analytics with IBM Cognos and SingleStore”. You will learn how real-time data can be leveraged to identify anomalies and create alarms by reading meter data, and classifying unusual spikes as warnings.
We will demonstrate:
These capabilities enable companies to:
The post Real-time analytics on IoT data appeared first on Journey to AI Blog.
Surreal September was more than just a challenge—it was about elevating your AI art skills…
Gen AI is not just another technology layer; it has the potential to eat the…
From beach days to board meetings, these top totes are designed to protect your valuables,…
This tutorial is in two parts; they are: • Using DistilBart for Summarization • Improving…
Those clicks and pops aren't supposed to be there! Give your music a bath with…
Overfitting is one of the most (if not the most!) common problems encountered when building…