Categories: FAANG

Rethinking Non-Negative Matrix Factorization with Implicit Neural Representations

This paper was accepted at the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2025
Non-negative Matrix Factorization (NMF) is a powerful technique for analyzing regularly-sampled data, i.e., data that can be stored in a matrix. For audio, this has led to numerous applications using time-frequency (TF) representations like the Short-Time Fourier Transform. However extending these applications to irregularly-spaced TF representations, like the Constant-Q transform, wavelets, or sinusoidal analysis models, has not been possible since these representations…
AI Generated Robotic Content

Recent Posts

SamsungCam UltraReal – Qwen-Image LoRA

Hey everyone, Just dropped the first version of a LoRA I've been working on: SamsungCam…

5 hours ago

40 Best Early Amazon Prime Day Deals on WIRED-Tested Gear (2025)

Amazon Prime Day is back, starting on October 7, but we’ve already found good deals…

6 hours ago

These little robots literally walk on water

HydroSpread, a breakthrough fabrication method, lets scientists build ultrathin soft robots directly on water. These…

6 hours ago

VHS filters work great with AI footage (WAN 2.2 + NTSC-RS)

submitted by /u/mtrx3 [link] [comments]

1 day ago

Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data

Imbalanced datasets are a common challenge in machine learning.

1 day ago

Unlock global AI inference scalability using new global cross-Region inference on Amazon Bedrock with Anthropic’s Claude Sonnet 4.5

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline…

1 day ago