Robots are quickly becoming part of our everyday lives, but they’re often only programmed to perform specific tasks well. While harnessing recent advances in AI could lead to robots that could help in many more ways, progress in building general-purpose robots is slower in part because of the time needed to collect real-world training data. Our latest paper introduces a self-improving AI agent for robotics, RoboCat, that learns to perform a variety of tasks across different arms, and then self-generates new training data to improve its technique.
A new AI agent developed by NVIDIA Research that can teach robots complex skills has trained a robotic hand to perform rapid pen-spinning tricks — for the first time as well as a human can. The stunning prestidigitation, showcased in the video above, is one of nearly 30 tasks that…
A collaboration between NVIDIA and academic researchers is prepping robots for surgery. ORBIT-Surgical — developed by researchers from the University of Toronto, UC Berkeley, ETH Zurich, Georgia Tech and NVIDIA — is a simulation framework to train robots that could augment the skills of surgical teams while reducing surgeons’ cognitive…