Categories: FAANG

Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures

The canonical approach in generative modeling is to split model fitting into two blocks: define first how to sample noise (e.g. Gaussian) and choose next what to do with it (e.g. using a single map or flows). We explore in this work an alternative route that ties sampling and mapping. We find inspiration in moment measures, a result that states that for any measure ρ, there exists a unique convex potential u such that ρ = ∇u♯e-u. While this does seem to tie effectively sampling (from log–concave distribution e-u) and action (pushing particles through ∇u), we observe on simple examples (e.g…
AI Generated Robotic Content

Recent Posts

Never forget…

submitted by /u/ShadowBoxingBabies [link] [comments]

3 hours ago

A Reinforcement Learning Based Universal Sequence Design for Polar Codes

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence…

3 hours ago

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

This post is cowritten with James Luo from BGL. Data analysis is emerging as a…

3 hours ago

An ‘Intimacy Crisis’ Is Driving the Dating Divide

In his book The Intimate Animal, sex and relationships researcher Justin Garcia says people have…

4 hours ago

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

1 day ago