jeremy singh
Register free for NVIDIA GTC to learn from experts on how AI and the evolution of the 3D internet are profoundly impacting industries—and society as a whole. We have prepared several AWS sessions to give you guidance on how to use AWS services powered by NVIDIA technology to meet your goals. Amazon Elastic Compute Cloud (Amazon EC2) instances powered by NVIDIA GPUs deliver the scalable performance needed for fast machine learning (ML) training, cost-effective ML inference, flexible remote virtual workstations, and powerful HPC computations.
AWS is a Global Diamond Sponsor of the conference.
Scaling Deep Learning Training on Amazon EC2 using PyTorch (Presented by Amazon Web Services) [A41454]
As deep learning models grow in size and complexity, they need to be trained using distributed architectures. In this session, we review the details of the PyTorch fully sharded data parallel (FSDP) algorithm, which enables you to train deep learning models at scale.
A Developer’s Guide to Choosing the Right GPUs for Deep Learning (Presented by Amazon Web Services) [A41463]
As a deep learning developer or data scientist, choosing the right GPU for deep learning can be challenging. On AWS, you can choose from multiple NVIDIA GPU-based EC2 compute instances depending on your training and deployment requirements. We dive into how to choose the right instance for your needs in this session.
Real-time Design in the Cloud with NVIDIA Omniverse on Amazon EC2 (Presented by Amazon Web Services) [A4631]
In this session, we discuss how, by deploying NVIDIA Omniverse Nucleus—the Universal Scene Description (USD) collaboration engine—on EC2 On-Demand compute instances, Omniverse is able to scale to meet the demands of global teams.
5G Killer App: Making Augmented and Virtual Reality a Reality [A41234]
Extended reality (XR), which comprises augmented, virtual, and mixed realities, is consistently envisioned as one of the key killer apps for 5G, because XR requires ultra-low latency and large bandwidths to deliver wired-equivalent experiences for users. In this session, we share how Verizon, AWS, and Ericsson are collaborating to combine 5G and XR technology with NVIDIA GPUs, RTX vWS, and CloudXR to build the infrastructure for commercial XR services across a variety of industries.
Accelerate and Scale GNNs with Deep Graph Library and GPUs [A41386]
Graphs play important roles in many applications, including drug discovery, recommender systems, fraud detection, and cybersecurity. Graph neural networks (GNNs) are the current state-of-the-art method for computing graph embeddings in these applications. This session discusses the recent improvements of the Deep Graph Library on NVIDIA GPUs in the DGL 0.9 release cycle.
Register for free for access to this content, and be sure to visit our sponsor page to learn more about AWS solutions powered by NVIDIA. See you there! |
Surreal September was more than just a challenge—it was about elevating your AI art skills…
Gen AI is not just another technology layer; it has the potential to eat the…
From beach days to board meetings, these top totes are designed to protect your valuables,…
This tutorial is in two parts; they are: • Using DistilBart for Summarization • Improving…
Those clicks and pops aren't supposed to be there! Give your music a bath with…
Overfitting is one of the most (if not the most!) common problems encountered when building…