Categories: FAANG

Scaling Laws for Optimal Data Mixtures

Large foundation models are typically trained on data from multiple domains, with the data mixture—the proportion of each domain used—playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size N trained with D tokens and a specific domain weight vector h. We validate the universality of these scaling laws by…
AI Generated Robotic Content

Recent Posts

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

13 hours ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

13 hours ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

13 hours ago

When your AI browser becomes your enemy: The Comet security disaster

Remember when browsers were simple? You clicked a link, a page loaded, maybe you filled…

14 hours ago

Baseus Inspire XC1 Review: Excellent Open Earbuds

These affordable open buds come with Bose-crafted sound.

14 hours ago

DeepMind introduces AI agent that learns to complete various tasks in a scalable world model

Over the past decade, deep learning has transformed how artificial intelligence (AI) agents perceive and…

14 hours ago