Categories: FAANG

Self-Supervised Temporal Analysis of Spatiotemporal Data

*=Equal Contributors
There exists a correlation between geospatial activity temporal patterns and type of land use. A novel self-supervised approach is proposed to survey landscape based on activity time series, where time series signal is transformed to frequency domain and compressed into embeddings by a contractive autoencoder, which preserve cyclic temporal patterns observed in time series. The embeddings are input to segmentation neural network for binary classification. Experiments show that the temporal embeddings are effective in classifying residential area and commercial area.
AI Generated Robotic Content

Recent Posts

Exploring Prediction Targets in Masked Pre-Training for Speech Foundation Models

Speech foundation models, such as HuBERT and its variants, are pre-trained on large amounts of…

5 hours ago

How GoDaddy built a category generation system at scale with batch inference for Amazon Bedrock

This post was co-written with Vishal Singh, Data Engineering Leader at Data & Analytics team…

5 hours ago

10 months to innovation: Definity’s leap to data agility with BigQuery and Vertex AI

At Definity, a leading Canadian P&C insurer with a history spanning over 150 years, we…

5 hours ago

Nvidia’s GTC keynote will emphasize AI over gaming

Don't expect to hear a lot about better framerates and raytracing at the Nvidia GTC…

6 hours ago

These Are the 10 DOGE Operatives Inside the Social Security Administration

The team working at the Social Security Administration appears to be among the largest DOGE…

6 hours ago

Exo 2: A new programming language for high-performance computing, with much less code

Many companies invest heavily in hiring talent to create the high-performance library code that underpins…

6 hours ago