Categories: FAANG

SeMAnD: Self-Supervised Anomaly Detection in Multimodal Geospatial Datasets

*= Equal Contributors
We propose a Self-supervised Anomaly Detection technique, called SeMAnD, to detect geometric anomalies in Multimodal geospatial datasets. Geospatial data comprises acquired and derived heterogeneous data modalities that we transform to semantically meaningful, image-like tensors to address the challenges of representation, alignment, and fusion of multimodal data. SeMAnD is comprised of (i) a simple data augmentation strategy, called RandPolyAugment, capable of generating diverse augmentations of vector geometries, and (ii) a self-supervised training objective with three…
AI Generated Robotic Content

Recent Posts

A developer’s guide to Gemini Live API in Vertex AI

Give your AI apps and agents a natural, almost human-like interface, all through a single…

9 hours ago

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

1 day ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago