Categories: FAANG

SeMAnD: Self-Supervised Anomaly Detection in Multimodal Geospatial Datasets

*= Equal Contributors
We propose a Self-supervised Anomaly Detection technique, called SeMAnD, to detect geometric anomalies in Multimodal geospatial datasets. Geospatial data comprises acquired and derived heterogeneous data modalities that we transform to semantically meaningful, image-like tensors to address the challenges of representation, alignment, and fusion of multimodal data. SeMAnD is comprised of (i) a simple data augmentation strategy, called RandPolyAugment, capable of generating diverse augmentations of vector geometries, and (ii) a self-supervised training objective with three…
AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

5 hours ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

5 hours ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

5 hours ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

6 hours ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

6 hours ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

6 hours ago