Semantic Regexes: Auto-Interpreting LLM Features with a Structured Language
Automated interpretability aims to translate large language model (LLM) features into human understandable descriptions. However, these natural language feature descriptions are often vague, inconsistent, and require manual relabeling. In response, we introduce semantic regexes, structured language descriptions of LLM features. By combining primitives that capture linguistic and semantic feature patterns with modifiers for contextualization, composition, and quantification, semantic regexes produce precise and expressive feature descriptions. Across quantitative benchmarks and qualitative…
Large language models (LLMs) have greatly improved their capability in performing NLP tasks. However, deeper semantic understanding, contextual coherence, and more subtle reasoning are still difficult to obtain. The paper discusses state-of-the-art methodologies that advance LLMs with more advanced NLU techniques, such as semantic parsing, knowledge integration, and contextual reinforcement…
Introducing Robotic Transformer 2 (RT-2), a novel vision-language-action (VLA) model that learns from both web and robotics data, and translates this knowledge into generalised instructions for robotic control, while retaining web-scale capabilities. This work builds upon Robotic Transformer 1 (RT-1), a model trained on multi-task demonstrations which can learn combinations…