Categories: FAANG

SEMORec: A Scalarized Efficient Multi-Objective Recommendation Framework

Recommendation systems in multi-stakeholder environments often require optimizing for multiple objectives simultaneously to meet supplier and consumer demands. Serving recommendations in these settings relies on efficiently combining the objectives to address each stakeholder’s expectations, often through a scalarization function with pre-determined and fixed weights. In practice, selecting these weights becomes a consequent problem. Recent work has developed algorithms that adapt these weights based on application-specific needs by using RL to train a model. While this solves for automatic…
AI Generated Robotic Content

Recent Posts

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

3 hours ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

1 day ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

1 day ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

1 day ago

As AI Grows More Complex, Model Builders Rely on NVIDIA

Unveiling what it describes as the most capable model series yet for professional knowledge work,…

1 day ago