Amazon SageMaker Studio is a fully integrated development environment (IDE) for machine learning (ML) that enables data scientists and developers to perform every step of the ML workflow, from preparing data to building, training, tuning, and deploying models.
To access SageMaker Studio, Amazon SageMaker Canvas, or other Amazon ML environments like RStudio on Amazon SageMaker, you must first provision a SageMaker domain. A SageMaker domain includes an associated Amazon Elastic File System (Amazon EFS) volume; a list of authorized users; and a variety of security, application, policy, and Amazon Virtual Private Cloud (Amazon VPC) configurations.
Administrators can now provision multiple SageMaker domains in order to separate different lines of business or teams within a single AWS account. This creates a logical separation between the users, files storage, and configuration settings for various groups in your organization. As an example, your organization may want to separate your financial line of business from the sustainability research division, as shown in the following multi-domain console.
Creating multiple SageMaker domains also allows you to granularly set domain-level configurations such as VPC configurations in order to permit public internet access for some groups’ research, while enforcing that traffic goes through a specified VPC for business units with greater restriction.
In addition to separating users, file storage, and domain configurations, administrators can also separate SageMaker resources that are created within their domain. By default, SageMaker now automatically tags new SageMaker resources such as training jobs, processing jobs, experiments, pipelines, and model registry entries with their respective sagemaker:domain-arn
. SageMaker also tags the resource with the sagemaker:user-profile-arn
or sagemaker:space-arn
to designate the resource creation at an even more granular level.
Administrators can use automated tagging to easily monitor costs associated with their line of business, teams, individual users, or individual business problems by using tools such as AWS Budgets and AWS Cost Explorer. As an example, an administrator can attach a cost allocation tag for the sagemaker:domain-arn
tag.
This allows them to utilize Cost Explorer to visualize the notebook spend for a given domain.
Administrators can attach AWS Identity and Access Management (IAM) policies that ensure a domain’s user can only create and open SageMaker resources that are originating from their respective domain. The following code is an example of such a policy:
For more information, see Multiple domains overview.
Since the launch of the multi-domain capability, new resources are automatically tagged with aws:ResourceTag/sagemaker:domain-arn
. However, if you want to update existing resources to facilitate resource isolation, administrations can use the add-tag
SageMaker API call in a script. The below example shows how to tag all existing experiments to a domain:
You can verify that any individual resource was correctly tagged with the following code sample:
In this section, we outline how you can set up multiple SageMaker domains in your own AWS account. You can either use the AWS Command Line Interface (AWS CLI) or the SageMaker console. Refer to Onboard to Amazon SageMaker Domain for the most up-to-date instructions on creating a domain.
There are no necessary API changes from the previous aws sagemaker create-domain
CLI call, but there is now support for --default-space-settings
if you intend to use shared spaces in SageMaker Studio. For more information, see shared spaces in Amazon SageMaker Studio.
Create a new domain with your specified configurations using aws sagemaker create-domain
, and then you’re ready to populate it with users.
On the updated SageMaker console, you can administer your domains via the new option called SageMaker Domains in the navigation pane.
Here you’ll be presented with the options to open existing domains, or create a new one using the graphical interface.
Utilizing multiple SageMaker domains provides flexibility to meet your organizational needs. Whether you need to isolate users and their business groups, or you want to run separate domains due to configuration differences, we encourage you to stand up multiple SageMaker domains within a single AWS account!
Our next iteration of the FSF sets out stronger security protocols on the path to…
Large neural networks pretrained on web-scale corpora are central to modern machine learning. In this…
Generative AI has revolutionized technology through generating content and solving complex problems. To fully take…
At Google Cloud, we're deeply invested in making AI helpful to organizations everywhere — not…
Advanced Micro Devices reported revenue of $7.658 billion for the fourth quarter, up 24% from…