This post is divided into three parts; they are: • Why Skip Connections are Needed in Transformers • Implementation of Skip Connections in Transformer Models • Pre-norm vs Post-norm Transformer Architectures Transformer models, like other deep learning models, stack many layers on top of each other.
This post is divided into five parts; they are: • Why Normalization is Needed in Transformers • LayerNorm and Its Implementation • Adaptive LayerNorm • RMS Norm and Its Implementation • Using PyTorch's Built-in Normalization Normalization layers improve model quality in deep learning.
This post is divided into three parts; they are: • Origination of the Transformer Model • The Transformer Architecture • Variations of the Transformer Architecture Transformer architecture originated from the 2017 paper "Attention is All You Need" by Vaswani et al.
This post covers three main areas: • Why Mixture of Experts is Needed in Transformers • How Mixture of Experts Works • Implementation of MoE in Transformer Models The Mixture of Experts (MoE) concept was first introduced in 1991 by