Categories: AI/ML News

Solving brain dynamics gives rise to flexible machine-learning models

Last year, MIT researchers announced that they had built “liquid” neural networks, inspired by the brains of small species: a class of flexible, robust machine learning models that learn on the job and can adapt to changing conditions, for real-world safety-critical tasks, like driving and flying. The flexibility of these “liquid” neural nets meant boosting the bloodline to our connected world, yielding better decision-making for many tasks involving time-series data, such as brain and heart monitoring, weather forecasting, and stock pricing.
AI Generated Robotic Content

Share
Published by
AI Generated Robotic Content

Recent Posts

An experiment with “realism” with Wan2.2 that are safe for work images

Got bored seeing the usual women pics every time I opened this sub so decided…

21 hours ago

Introducing Veo 3.1 and advanced creative capabilities

We’re rolling out significant updates to Veo that give people even more creative control.

21 hours ago

Agentic RAG for Software Testing with Hybrid Vector-Graph and Multi-Agent Orchestration

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for…

21 hours ago

Transforming enterprise operations: Four high-impact use cases with Amazon Nova

Since the launch of Amazon Nova at AWS re:Invent 2024, we have seen adoption trends…

21 hours ago

The ultimate prompting guide for Veo 3.1

If a picture is worth a thousand words, a video is worth a million.  For…

21 hours ago

Anthropic is giving away its powerful Claude Haiku 4.5 AI for free to take on OpenAI

Anthropic released Claude Haiku 4.5 on Wednesday, a smaller and significantly cheaper artificial intelligence model…

22 hours ago