Categories: FAANG

SPD: Sync-Point Drop for Efficient Tensor Parallelism of Large Language Models

With the rapid expansion in the scale of large
language models (LLMs), enabling efficient distributed inference across multiple computing units has become increasingly critical. However, communication overheads from popular distributed
inference techniques such as Tensor Parallelism
pose a significant challenge to achieve scalability
and low latency. Therefore, we introduce a novel
optimization technique, Sync-Point Drop (SPD), to reduce communication overheads in tensor parallelism by selectively dropping synchronization on attention outputs. In detail, we first propose a block design that…
AI Generated Robotic Content

Recent Posts

Never forget…

submitted by /u/ShadowBoxingBabies [link] [comments]

3 hours ago

A Reinforcement Learning Based Universal Sequence Design for Polar Codes

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence…

3 hours ago

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

This post is cowritten with James Luo from BGL. Data analysis is emerging as a…

3 hours ago

An ‘Intimacy Crisis’ Is Driving the Dating Divide

In his book The Intimate Animal, sex and relationships researcher Justin Garcia says people have…

4 hours ago

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

1 day ago