Categories: FAANG

SPD: Sync-Point Drop for Efficient Tensor Parallelism of Large Language Models

With the rapid expansion in the scale of large
language models (LLMs), enabling efficient distributed inference across multiple computing units has become increasingly critical. However, communication overheads from popular distributed
inference techniques such as Tensor Parallelism
pose a significant challenge to achieve scalability
and low latency. Therefore, we introduce a novel
optimization technique, Sync-Point Drop (SPD), to reduce communication overheads in tensor parallelism by selectively dropping synchronization on attention outputs. In detail, we first propose a block design that…
AI Generated Robotic Content

Recent Posts

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

16 hours ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago

As AI Grows More Complex, Model Builders Rely on NVIDIA

Unveiling what it describes as the most capable model series yet for professional knowledge work,…

2 days ago