Categories: FAANG

Speculative Streaming: Fast LLM Inference Without Auxiliary Models

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) workshop at NeurIPS 2024.
Speculative decoding is a prominent technique to speed up the inference of a large target language model based on predictions of an auxiliary draft model. While effective, in application-specific settings, it often involves fine-tuning both draft and target models to achieve high acceptance rates. As the number of downstream tasks grows, these draft models add significant complexity to inference systems. We propose Speculative Streaming, a single-model speculative decoding method…
AI Generated Robotic Content

Recent Posts

Unleash the power of generative AI with Amazon Q Business: How CCoEs can scale cloud governance best practices and drive innovation

This post is co-written with Steven Craig from Hearst.  To maintain their competitive edge, organizations…

7 hours ago

Election Denial Conspiracy Theories Are Exploding on X. This Time They’re Coming From the Left

Conspiracy theories about missing votes—which are not, in fact, missing—and something being “not right” are…

8 hours ago

AI-driven mobile robots team up to tackle chemical synthesis

Researchers have developed AI-driven mobile robots that can carry out chemical synthesis research with extraordinary…

8 hours ago

Aquatic robot’s self-learning optimization enhances underwater object manipulation skills

In recent years, roboticists have introduced robotic systems that can complete missions in various environments,…

8 hours ago

Best AI Tools for Business

Overwhelmed by manual tasks and data overload? Streamline your business and boost revenue with the…

1 day ago

Building a Robust Machine Learning Pipeline: Best Practices and Common Pitfalls

In real life, the machine learning model is not a standalone object that only produces…

1 day ago