Categories: FAANG

Stable Diffusion Models are Secretly Good at Visual In-Context Learning

Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) — the ability to leverage a few sets of example prompts to adapt to various tasks without having to explicitly update the model weights. ICL has recently been explored for computer vision tasks with promising early outcomes. These approaches involve specialized training and/or additional data that complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be repurposed for visual in-context learning…
AI Generated Robotic Content

Recent Posts

A developer’s guide to Gemini Live API in Vertex AI

Give your AI apps and agents a natural, almost human-like interface, all through a single…

3 hours ago

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

1 day ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago