Categories: FAANG

STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis

We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance in high-resolution image synthesis. The core of STARFlow is Transformer Autoregressive Flow (TARFlow), which combines the expressive power of normalizing flows with the structured modeling capabilities of Autoregressive Transformers. We first establish the theoretical universality of TARFlow for modeling continuous distributions. Building on this foundation, we introduce several key architectural and algorithmic innovations to significantly enhance scalability: (1) a deep-shallow…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

15 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

15 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

15 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

15 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

16 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

16 hours ago