Categories: FAANG

Statistical Deconvolution for Inference of Infection Time Series

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias. We develop an estimator with a regularization scheme to cope with stochastic delays, which we term the robust incidence deconvolution estimator. We compare the method to existing…
AI Generated Robotic Content

Recent Posts

An experiment with “realism” with Wan2.2 that are safe for work images

Got bored seeing the usual women pics every time I opened this sub so decided…

8 hours ago

Introducing Veo 3.1 and advanced creative capabilities

We’re rolling out significant updates to Veo that give people even more creative control.

8 hours ago

Agentic RAG for Software Testing with Hybrid Vector-Graph and Multi-Agent Orchestration

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for…

8 hours ago

Transforming enterprise operations: Four high-impact use cases with Amazon Nova

Since the launch of Amazon Nova at AWS re:Invent 2024, we have seen adoption trends…

8 hours ago

The ultimate prompting guide for Veo 3.1

If a picture is worth a thousand words, a video is worth a million.  For…

8 hours ago

Anthropic is giving away its powerful Claude Haiku 4.5 AI for free to take on OpenAI

Anthropic released Claude Haiku 4.5 on Wednesday, a smaller and significantly cheaper artificial intelligence model…

9 hours ago