ML 18632 complete arch
This post is co-written with Samit Verma, Eusha Rizvi, Manmeet Singh, Troy Smith, and Corey Finley from Verisk.
Verisk Rating Insights as a feature of ISO Electronic Rating Content (ERC) is a powerful tool designed to provide summaries of ISO Rating changes between two releases. Traditionally, extracting specific filing information or identifying differences across multiple releases required manual downloads of full packages, which was time-consuming and prone to inefficiencies. This challenge, coupled with the need for accurate and timely customer support, prompted Verisk to explore innovative ways to enhance user accessibility and automate repetitive processes. Using generative AI and Amazon Web Services (AWS) services, Verisk has made significant strides in creating a conversational user interface for users to easily retrieve specific information, identify content differences, and improve overall operational efficiency.
In this post, we dive into how Verisk Rating Insights, powered by Amazon Bedrock, large language models (LLM), and Retrieval Augmented Generation (RAG), is transforming the way customers interact with and access ISO ERC changes.
Rating Insights provides valuable content, but there were significant challenges with user accessibility and the time it took to extract actionable insights:
To solve these challenges, Verisk embarked on a journey to enhance Rating Insights with generative AI technologies. By integrating Anthropic’s Claude, available in Amazon Bedrock, and Amazon OpenSearch Service, Verisk created a sophisticated conversational platform where users can effortlessly access and analyze rating content changes.
The following diagram illustrates the high-level architecture of the solution, with distinct sections showing the data ingestion process and inference loop. The architecture uses multiple AWS services to add generative AI capabilities to the Ratings Insight system. This system’s components work together seamlessly, coordinating multiple LLM calls to generate user responses.
The following diagram shows the architectural components and the high-level steps involved in the Data Ingestion process.
The steps in the data ingestion process proceed as follows:
The following diagram shows the architectural components and the high-level steps involved in the inference loop to generate user responses.
The steps in the inference loop proceed as follows:
We used Anthropic’s Claude Sonnet 3.5 (model ID: anthropic.claude-3-5-sonnet-20240620-v1:0) to understand user input and provide detailed, contextually relevant responses. Anthropic’s Claude Sonnet 3.5 enhances the platform’s ability to interpret user queries and deliver accurate insights from complex content changes. LlamaIndex, which is an open source framework, served as the chain framework for efficiently connecting and managing different data sources to enable dynamic retrieval of content and insights.
We implemented RAG, which allows the model to pull specific, relevant data from the OpenSearch Serverless vector database. This means the system generates precise, up-to-date responses based on a user’s query without needing to sift through massive content downloads. The vector database enables intelligent search and retrieval, organizing content changes in a way that makes them quickly and easily accessible. This eliminates the need for manual searching or downloading of entire content packages. Verisk applied guardrails in Amazon Bedrock Guardrails along with custom guardrails around the generative model so the output adheres to specific compliance and quality standards, safeguarding the integrity of responses.
Verisk’s generative AI solution is a comprehensive, secure, and flexible service for building generative AI applications and agents. Amazon Bedrock connects you to leading FMs, services to deploy and operate agents, and tools for fine-tuning, safeguarding, and optimizing models along with knowledge bases to connect applications to your latest data so that you have everything you need to quickly move from experimentation to real-world deployment.
Given the novelty of generative AI, Verisk has established a governance council to oversee its solutions, ensuring they meet security, compliance, and data usage standards. Verisk implemented strict controls within the RAG pipeline to ensure data is only accessible to authorized users. This helps maintain the integrity and privacy of sensitive information. Legal reviews ensure IP protection and contract compliance.
The integration of these advanced technologies enables a seamless, user-friendly experience. Here’s how Verisk Rating Insights now works for customers:
The following diagram shows the architectural components and the high-level steps involved in the evaluation loop to generate relevant and grounded responses.
The steps in the evaluation loop proceed as follows:
The following diagram shows the process of capturing the chat history as contextual memory and storage for analysis.
The Verisk Rating Insights team has implemented a comprehensive evaluation framework and feedback loop mechanism respectively, shown in the above figures, to support continuous improvement and address the issues that might arise.
Ensuring high accuracy and consistency in responses is essential for Verisk’s generative AI solutions. However, LLMs can sometimes produce hallucinations or provide irrelevant details, affecting reliability. To address this, Verisk implemented:
Although the initial results were promising, they didn’t meet the desired accuracy and consistency levels. The development process involved several iterative improvements, such as redesigning the system and making multiple calls to the LLM. The primary metric for success was a manual grading system where business experts compared the results and provided continuous feedback to improve overall benchmarks.
By integrating generative AI into Verisk Rating Insights, the business has seen a remarkable transformation. Customers enjoyed significant time savings. By eliminating the need to download entire packages and manually search for differences, the time spent on analysis has been drastically reduced. Customers no longer spend 3–4 hours per test case. What at one time took days now takes minutes.
This time savings brought increased productivity. With an automated solution that instantly provides relevant insights, customers can focus more on decision-making rather than spending time on manual data retrieval. And by automating difference analysis and providing a centralized, effortless platform, customers can be more confident in the accuracy of their results and avoid missing critical changes.
For Verisk, the benefit was a reduced customer support burden because the ERC customer support team now spends less time addressing queries. With the AI-powered conversational interface, users can self-serve and get answers in real time, freeing up support resources for more complex inquiries.
The automation of repetitive training tasks meant quicker and more efficient customer onboarding. This reduces the need for lengthy training sessions, and new customers become proficient faster. The integration of generative AI has reduced redundant workflows and the need for manual intervention. This streamlines operations across multiple departments, leading to a more agile and responsive business.
Looking ahead, Verisk plans to continue enhancing the Rating Insights platform twofold. First, we’ll expand the scope of queries, enabling more sophisticated queries related to different filing types and more nuanced coverage areas. Second, we’ll scale the platform. With Amazon Bedrock providing the infrastructure, Verisk aims to scale this solution further to support more users and additional content sets across various product lines.
Verisk Rating Insights, now powered by generative AI and AWS technologies, has transformed the way customers interact with and access rating content changes. Through a conversational user interface, RAG, and vector databases, Verisk intends to eliminate inefficiencies and save customers valuable time and resources while enhancing overall accessibility. For Verisk, this solution has improved operational efficiency and provided a strong foundation for continued innovation.
With Amazon Bedrock and a focus on automation, Verisk is driving the future of intelligent customer support and content management, empowering both their customers and their internal teams to make smarter, faster decisions.
For more information, refer to the following resources:
submitted by /u/Jeffu [link] [comments]
You don’t always need a heavy wrapper, a big client class, or dozens of lines…
The proliferation of Internet of Things (IoT) devices has transformed how we interact with our…
Customer service teams at fast-growing companies face a challenging reality: customer inquiries are growing exponentially,…
2025 was supposed to be the year of "AI agents," according to Nvidia CEO Jensen…
Another round of terminations, combined with previous layoffs and departures, has reduced the Centers for…