Categories: FAANG

The Calibration Generalization Gap

This paper was accepted at the Workshop on Distribution-Free Uncertainty Quantification at ICML 2022.
Calibration is a fundamental property of a good predictive model: it requires that the model predicts correctly in proportion to its confidence. Modern neural networks, however, provide no strong guarantees on their calibration— and can be either poorly calibrated or well-calibrated depending on the setting. It is currently unclear which factors contribute to good calibration (architecture, data augmentation, overparameterization, etc), though various claims exist in the literature. We…
AI Generated Robotic Content

Recent Posts

An experiment with “realism” with Wan2.2 that are safe for work images

Got bored seeing the usual women pics every time I opened this sub so decided…

8 hours ago

Introducing Veo 3.1 and advanced creative capabilities

We’re rolling out significant updates to Veo that give people even more creative control.

8 hours ago

Agentic RAG for Software Testing with Hybrid Vector-Graph and Multi-Agent Orchestration

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for…

8 hours ago

Transforming enterprise operations: Four high-impact use cases with Amazon Nova

Since the launch of Amazon Nova at AWS re:Invent 2024, we have seen adoption trends…

8 hours ago

The ultimate prompting guide for Veo 3.1

If a picture is worth a thousand words, a video is worth a million.  For…

8 hours ago

Anthropic is giving away its powerful Claude Haiku 4.5 AI for free to take on OpenAI

Anthropic released Claude Haiku 4.5 on Wednesday, a smaller and significantly cheaper artificial intelligence model…

10 hours ago