Towards Multimodal Multitask Scene Understanding Models for Indoor Mobile Agents
The perception system in personalized mobile agents requires developing indoor scene understanding models, which can understand 3D geometries, capture objectiveness, analyze human behaviors, etc. Nonetheless, this direction has not been well-explored in comparison with models for outdoor environments (e.g., the autonomous driving system that includes pedestrian prediction, car detection, traffic sign recognition, etc.). In this paper, we first discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments, and other challenges such as fusion between…
A key algorithm for understanding the world is material segmentation, which assigns a(metal, glass, etc.) to each pixel. We find that a model trained on existing data underperforms in some settings and propose to address this with a large-scale dataset of 3.2 million dense segments on 44,560 indoor…
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish…