Categories: FAANG

Unlock the Secrets to Reducing LLM Hallucinations

Do you ever wonder why LLMs Hallucinate or get things completely wrong?

Why does it happen even after training the model on your knowledge base or even after fine-tuning?

The answer lies in understanding the fundamental structure of an LLM and how it works.

One of the biggest misconceptions is in thinking that LLMs have knowledge or that they are programs.

At their core, they are a Statistical Representation of Knowledge, and understanding this can be profound.

Here is the crucial difference between both.

When you ask a knowledge base a question, it simply looks up the information and spits it out.

Conversely, an LLM is a probabilistic model of knowledge bases that generates answers; hence, it is a Generative Large Language Model. It generates responses based on language probabilities of what word should come next.

As a result, this can lead to hallucinations, self-contradictions, bias, and incorrect responses.

Now, bias goes far deeper than just LLMs, and I’ll cover that in more detail in a future email, but for now, the question is what can be done about all of this and how can we work with LLMs in such a way as to limit bias, hallucinations and incorrect responses?

Here are a few techniques we can use:

  1. NLU: using NLU for critical areas where a specific answer is required
  2. Knowledge Bases: Feeding the LLM information that can be used as the basis for answering questions
  3. Prompt Engineering & Prompt-tunning: This can be used to optimize the performance and accuracy of the model.
  4. Fine-Tuning: Training the model on your data

Want to go deeper?

We created a free Guide to LLMs that covers the basics and advanced topics like fine-tuning, and we hope to offer a model and framework for optimizing your success with LLMs.

Till next time


🤯 Unlock the Secrets to Reducing LLM Hallucinations was originally published in Chatbots Life on Medium, where people are continuing the conversation by highlighting and responding to this story.

AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

11 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

11 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

11 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

11 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

12 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

12 hours ago