Categories: FAANG

Unlock the Secrets to Reducing LLM Hallucinations

Do you ever wonder why LLMs Hallucinate or get things completely wrong?

Why does it happen even after training the model on your knowledge base or even after fine-tuning?

The answer lies in understanding the fundamental structure of an LLM and how it works.

One of the biggest misconceptions is in thinking that LLMs have knowledge or that they are programs.

At their core, they are a Statistical Representation of Knowledge, and understanding this can be profound.

Here is the crucial difference between both.

When you ask a knowledge base a question, it simply looks up the information and spits it out.

Conversely, an LLM is a probabilistic model of knowledge bases that generates answers; hence, it is a Generative Large Language Model. It generates responses based on language probabilities of what word should come next.

As a result, this can lead to hallucinations, self-contradictions, bias, and incorrect responses.

Now, bias goes far deeper than just LLMs, and I’ll cover that in more detail in a future email, but for now, the question is what can be done about all of this and how can we work with LLMs in such a way as to limit bias, hallucinations and incorrect responses?

Here are a few techniques we can use:

  1. NLU: using NLU for critical areas where a specific answer is required
  2. Knowledge Bases: Feeding the LLM information that can be used as the basis for answering questions
  3. Prompt Engineering & Prompt-tunning: This can be used to optimize the performance and accuracy of the model.
  4. Fine-Tuning: Training the model on your data

Want to go deeper?

We created a free Guide to LLMs that covers the basics and advanced topics like fine-tuning, and we hope to offer a model and framework for optimizing your success with LLMs.

Till next time


🤯 Unlock the Secrets to Reducing LLM Hallucinations was originally published in Chatbots Life on Medium, where people are continuing the conversation by highlighting and responding to this story.

AI Generated Robotic Content

Recent Posts

Flux Kontext Images — Note how well it keeps the clothes and face and hair

submitted by /u/FitContribution2946 [link] [comments]

25 seconds ago

How AI Agents Are Transforming Marketing Workflows

AI agents move beyond task automation to deliver real-time optimization, brand governance, and marketing outcomes…

30 seconds ago

Word Embeddings in Language Models

This post is divided into three parts; they are: • Understanding Word Embeddings • Using…

33 seconds ago

Prompting Whisper for Improved Verbatim Transcription and End-to-end Miscue Detection

*Equal Contributors Identifying mistakes (i.e., miscues) made while reading aloud is commonly approached post-hoc by…

45 seconds ago

Build GraphRAG applications using Amazon Bedrock Knowledge Bases

In these days, it is more common to companies adopting AI-first strategy to stay competitive…

53 seconds ago

How S&P is using deep web scraping, ensemble learning and Snowflake architecture to collect 5X more data on SMEs

Previously, S&P only had data on about 2 million SMEs, but its AI-powered RiskGauge platform…

1 hour ago