Categories: FAANG

Unlock the Secrets to Reducing LLM Hallucinations

Do you ever wonder why LLMs Hallucinate or get things completely wrong?

Why does it happen even after training the model on your knowledge base or even after fine-tuning?

The answer lies in understanding the fundamental structure of an LLM and how it works.

One of the biggest misconceptions is in thinking that LLMs have knowledge or that they are programs.

At their core, they are a Statistical Representation of Knowledge, and understanding this can be profound.

Here is the crucial difference between both.

When you ask a knowledge base a question, it simply looks up the information and spits it out.

Conversely, an LLM is a probabilistic model of knowledge bases that generates answers; hence, it is a Generative Large Language Model. It generates responses based on language probabilities of what word should come next.

As a result, this can lead to hallucinations, self-contradictions, bias, and incorrect responses.

Now, bias goes far deeper than just LLMs, and I’ll cover that in more detail in a future email, but for now, the question is what can be done about all of this and how can we work with LLMs in such a way as to limit bias, hallucinations and incorrect responses?

Here are a few techniques we can use:

  1. NLU: using NLU for critical areas where a specific answer is required
  2. Knowledge Bases: Feeding the LLM information that can be used as the basis for answering questions
  3. Prompt Engineering & Prompt-tunning: This can be used to optimize the performance and accuracy of the model.
  4. Fine-Tuning: Training the model on your data

Want to go deeper?

We created a free Guide to LLMs that covers the basics and advanced topics like fine-tuning, and we hope to offer a model and framework for optimizing your success with LLMs.

Till next time


🤯 Unlock the Secrets to Reducing LLM Hallucinations was originally published in Chatbots Life on Medium, where people are continuing the conversation by highlighting and responding to this story.

AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

2 hours ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

2 hours ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

2 hours ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

3 hours ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

3 hours ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

3 hours ago