Categories: FAANG

VeCLIP: Improving CLIP Training via Visual-enriched Captions

Paper abstract: Large-scale web-crawled datasets are fundamental for the success of pre-training vision-language models, such as CLIP. However, the inherent noise and potential irrelevance of web-crawled AltTexts pose challenges in achieving precise image-text alignment. Existing methods utilizing large language models (LLMs) for caption rewriting have shown promise on small, curated datasets like CC3M and CC12M. This study introduces a scalable pipeline for noisy caption rewriting. Unlike recent LLM rewriting techniques, we emphasize the incorporation of visual concepts into captions, termed…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

14 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

14 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

14 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

14 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

15 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

15 hours ago