This paper presents the Embedding Pose Graph (EPG), an innovative method that combines the strengths of foundation models with a simple 3D representation suitable for robotics applications. Addressing the need for efficient spatial understanding in robotics, EPG provides a compact yet powerful approach by attaching foundation model features to the…
We introduce GAUDI, a generative model capable of capturing the distribution of complex and realistic 3D scenes that can be rendered immersively from a moving camera. We tackle this challenging problem with a scalable yet powerful approach, where we first optimize a latent representation that disentangles radiance fields and camera…
We introduce Shape Tokens, a 3D representation that is continuous, compact, and easy to integrate into machine learning models. Shape Tokens serve as conditioning vectors, representing shape information within a 3D flow-matching model. This flow-matching model is trained to approximate probability density functions corresponding to delta functions concentrated on the…