Categories: FAANG

SPIN: An Empirical Evaluation on Sharing Parameters of Isotropic Networks

Recent isotropic networks, such as ConvMixer and vision transformers, have found significant success across visual recognition tasks, matching or outperforming non-isotropic convolutional neural networks (CNNs). Isotropic architectures are particularly well-suited to cross-layer weight sharing, an effective neural network compression technique. In this paper, we perform an empirical evaluation on methods for sharing parameters in isotropic networks (SPIN). We present a framework to formalize major weight sharing design decisions and perform a comprehensive empirical evaluation of this design…
AI Generated Robotic Content

Recent Posts

AI, Light, and Shadow: Jasper’s New Research Powers More Realistic Imagery

Jasper Research Lab’s new shadow generation research and model enable brands to create more photorealistic…

8 hours ago

Gemini 2.0 is now available to everyone

We’re announcing new updates to Gemini 2.0 Flash, plus introducing Gemini 2.0 Flash-Lite and Gemini…

8 hours ago

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response…

8 hours ago

Trellix lowers cost, increases speed, and adds delivery flexibility with cost-effective and performant Amazon Nova Micro and Amazon Nova Lite models

This post is co-written with Martin Holste from Trellix.  Security teams are dealing with an…

8 hours ago

Designing sustainable AI: A deep dive into TPU efficiency and lifecycle emissions

As AI continues to unlock new opportunities for business growth and societal benefits, we’re working…

8 hours ago

NOAA Employees Told to Pause Work With ‘Foreign Nationals’

An internal email obtained by WIRED shows that NOAA workers received orders to pause “ALL…

9 hours ago