Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo

Augmenting the multi-step reasoning abilities of Large Language Models (LLMs) has been a persistent challenge. Recently, verification has shown promise in improving solution consistency by evaluating generated outputs. However, current verification approaches suffer from sampling inefficiencies, requiring a large number of samples to achieve satisfactory performance. Additionally, training an effective verifier often depends on extensive …

ML 17903 workflow

Harnessing Amazon Bedrock generative AI for resilient supply chain

From pandemic shutdowns to geopolitical tensions, recent years have thrown our global supply chains into unexpected chaos. This turbulent period has taught both governments and organizations a crucial lesson: supply chain excellence depends not just on efficiency but on the ability to navigate disruptions through strategic risk management. By leveraging the generative AI capabilities and …

image1 b70SNjC.max 1000x1000 1

Improving model performance with PyTorch/XLA 2.6

For developers who want to use the PyTorch deep learning framework with Cloud TPUs, the PyTorch/XLA Python package is key, offering developers a way to run their PyTorch models on Cloud TPUs with only a few minor code changes. It does so by leveraging OpenXLA, developed by Google, which gives developers the ability to define …