The Power of Pipelines

Machine learning projects often require the execution of a sequence of data preprocessing steps followed by a learning algorithm. Managing these steps individually can be cumbersome and error-prone. This is where sklearn pipelines come into play. This post will explore how pipelines automate critical aspects of machine learning workflows, such as data preprocessing, feature engineering, …

10 Machine Learning Algorithms Explained Using Real-World Analogies

When I was in high school and studied complex mathematics problems, I always used to think about why we were studying them or why they were useful. I was unable to understand and find their usage in the real world. Since machine learning is also a trending topic that many people want to explore, the …

Interior Design with Stable Diffusion (7-day mini-course)

At its core, Stable Diffusion is a deep learning model that can generate pictures. Together with some other models and UI, you can consider that as a tool to help you create pictures in a new dimension that not only you can provide instructions on how the picture looks like, but also the generative model …

ML 16557 arch diag

Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK

Generating image descriptions is a common requirement for applications across many industries. One common use case is tagging images with descriptive metadata to improve discoverability within an organization’s content repositories. Ecommerce platforms also use automatically generated image descriptions to provide customers with additional product details. Descriptive image captions also improve accessibility for users with visual …

Machine learning technique predicts likely accounting fraud across supply chains

As the perpetrators of accounting fraud become ever more sophisticated in their techniques, fraud detection needs to step up its game. Thankfully, a group of researchers have devised a new machine learning ‘detective’ that is able to analyze not just fraud at a single firm, but predict likely fraud across whole supply chains and industries.