World scale inverse reinforcement learning in Google Maps
Posted by Matt Barnes, Software Engineer, Google Research Routing in Google Maps remains one of our most helpful and frequently used features. Determining the best route from A to B requires making complex trade-offs between factors including the estimated time of arrival (ETA), tolls, directness, surface conditions (e.g., paved, unpaved roads), and user preferences, which …
Read more “World scale inverse reinforcement learning in Google Maps”