Findings of the IWSLT 2024 Evaluation Campaign

Ibrahim Said Ahmad†, Antonios Anastasopoulos††††, Ondřej Bojar¶, Claudia Borg††, Marine Carpuat‡, Roldano Cattoni§, Mauro Cettolo§, William Chen‡‡, Qianqian Dong¶¶, Marcello Federico§§, Barry Haddow‡‡‡, Dávid Javorsky¶, Mateusz Krubiński¶, Tsz Kin Lam‡‡‡, Xutai Ma‡‡§, Prashant Mathur§§, Evgeny Matusov¶¶¶, Chandresh Kumar Maurya¶¶†, John P. McCrae†††, Kenton Murray†††, Satoshi Nakamura§§§, Matteo Negri§, Jan Niehues††¶, Xing Niu§§, Atul Kr. Ojha†††, …

ML 17494 image a 1

Fine-tune LLMs with synthetic data for context-based Q&A using Amazon Bedrock

There’s a growing demand from customers to incorporate generative AI into their businesses. Many use cases involve using pre-trained large language models (LLMs) through approaches like Retrieval Augmented Generation (RAG). However, for advanced, domain-specific tasks or those requiring specific formats, model customization techniques such as fine-tuning are sometimes necessary. Amazon Bedrock provides you with the …