A steadfast community in an ever-changing data landscape

There are still not enough data experts out there, even as the world of data evolves rapidly. We started the Summer School for Data Leaders five years ago to create a community for data experts to share ideas and relate to people facing similar challenges. Today, the Summer School has grown to include over 400 …

Ashish Khetan

Transfer learning for TensorFlow image classification models in Amazon SageMaker

Amazon SageMaker provides a suite of built-in algorithms, pre-trained models, and pre-built solution templates to help data scientists and machine learning (ML) practitioners get started on training and deploying ML models quickly. You can use these algorithms and models for both supervised and unsupervised learning. They can process various types of input data, including tabular, …

Picture 1ML 5216 6

Improve transcription accuracy of customer-agent calls with custom vocabulary in Amazon Transcribe

Many AWS customers have been successfully using Amazon Transcribe to accurately, efficiently, and automatically convert their customer audio conversations to text, and extract actionable insights from them. These insights can help you continuously enhance the processes and products that directly improve the quality and experience for your customers. In many countries, such as India, English …

Mel Spectrogram Inversion with Stable Pitch

Vocoders are models capable of transforming a low-dimensional spectral representation of an audio signal, typically the mel spectrogram, to a waveform. Modern speech generation pipelines use a vocoder as their final component. Recent vocoder models developed for speech achieve a high degree of realism, such that it is natural to wonder how they would perform …

GAUDI: A Neural Architect for Immersive 3D Scene Generation

We introduce GAUDI, a generative model capable of capturing the distribution of complex and realistic 3D scenes that can be rendered immersively from a moving camera. We tackle this challenging problem with a scalable yet powerful approach, where we first optimize a latent representation that disentangles radiance fields and camera poses. This latent representation is …

image5

Digitizing Smell: Using Molecular Maps to Understand Odor

Posted by Richard C. Gerkin, Google Research, and Alexander B. Wiltschko, Google Did you ever try to measure a smell? …Until you can measure their likenesses and differences you can have no science of odor. If you are ambitious to found a new science, measure a smell. — Alexander Graham Bell, 1914. How can we …

ML 8724 image001

Detect audio events with Amazon Rekognition

When most people think of using machine learning (ML) with audio data, the use case that usually comes to mind is transcription, also known as speech-to-text. However, there are other useful applications, including using ML to detect sounds. Using software to detect a sound is called audio event detection, and it has a number of …

Model Teachers: Startups Make Schools Smarter With Machine Learning

Like two valedictorians, SimInsights and Photomath tell stories worth hearing about how AI is advancing education. SimInsights in Irvine, Calif., uses NVIDIA conversational AI to make virtual and augmented reality classes lifelike for college students and employee training. Photomath — founded in Zagreb, Croatia and based in San Mateo, Calif. — created an app using …

Improving Voice Trigger Detection with Metric Learning

Voice trigger detection is an important task, which enables activating a voice assistant when a target user speaks a keyword phrase. A detector is typically trained on speech data independent of speaker information and used for the voice trigger detection task. However, such a speaker independent voice trigger detector typically suffers from performance degradation on …

NeILF: Neural Incident Light Field for Material and Lighting Estimation

We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry. In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons. Compared with recent approaches that approximate scene lightings as the 2D environment …