7 Agentic AI Trends to Watch in 2026
The agentic AI field is moving from experimental prototypes to production-ready autonomous systems.
The agentic AI field is moving from experimental prototypes to production-ready autonomous systems.
Editor’s note: This article is a part of our series on visualizing the foundations of machine learning.
This article is divided into five parts; they are: • An Example of Tensor Parallelism • Setting Up Tensor Parallelism • Preparing Model for Tensor Parallelism • Train a Model with Tensor Parallelism • Combining Tensor Parallelism with FSDP Tensor parallelism originated from the Megatron-LM paper.
This article is divided into five parts; they are: • Introduction to Fully Sharded Data Parallel • Preparing Model for FSDP Training • Training Loop with FSDP • Fine-Tuning FSDP Behavior • Checkpointing FSDP Models Sharding is a term originally used in database management systems, where it refers to dividing a database into smaller units, …
Read more “Train Your Large Model on Multiple GPUs with Fully Sharded Data Parallelism”
If you’ve built chatbots or worked with language models, you’re already familiar with how AI systems handle memory within a single conversation.
This article is divided into six parts; they are: • Pipeline Parallelism Overview • Model Preparation for Pipeline Parallelism • Stage and Pipeline Schedule • Training Loop • Distributed Checkpointing • Limitations of Pipeline Parallelism Pipeline parallelism means creating the model as a pipeline of stages.
Predicting the future has always been the holy grail of analytics.
This article is divided into two parts; they are: • Data Parallelism • Distributed Data Parallelism If you have multiple GPUs, you can combine them to operate as a single GPU with greater memory capacity.
This article is divided into two parts; they are: • Using `torch.
This article is divided into three parts; they are: • Floating-point Numbers • Automatic Mixed Precision Training • Gradient Checkpointing Let’s get started! The default data type in PyTorch is the IEEE 754 32-bit floating-point format, also known as single precision.