Tips for Deploying Machine Learning Models Efficiently

Introduction The process of deploying machine learning models is an important part of deploying AI technologies and systems to the real world. Unfortunately, the road to model deployment can be a tough one. The process of deployment is often characterized by challenges associated with taking a trained model — the culmination of a lengthy data-preparation …

Beginning Data Science (7-day mini-course)

Data science uses mathematics to analyze data, distill information, and tell a story. The result of data science may be just to rigorously confirm a hypothesis, or to discover some useful property from the data. There are many tools you can use in data science, from basic statistics to sophisticated machine learning models. Even the …

Tips for Handling Imbalanced Data in Machine Learning

Introduction Imperfect data is the norm rather than the exception in machine learning. Comparably common is the binary class imbalance when the classes in a trained data remains majority/minority class, or is moderately skewed. Imbalanced data can undermine a machine learning model by producing model selection biases. Therefore in the interest of model performance and …

5 Essential Classification Algorithms Explained for Beginners

Introduction Classification algorithms are at the heart of data science, helping us categorize and organize data into pre-defined classes. These algorithms are used in a wide array of applications, from spam detection and medical diagnosis to image recognition and customer profiling. It is for this reason that those new to data science must know about …

5 Essential Free Tools for Getting Started with LLMs

Image created by Author using Midjourney Large language models (LLMs) have become extremely prominent and useful for all sorts of tasks, but new users may find the large number of LLM tools and utilities intimidating. This article focuses on 5 of the available and widely-useful such tools, all of which are no-cost and created to …

How to Use Stable Diffusion Effectively

From the prompt to the picture, Stable Diffusion is a pipeline with many components and parameters. All these components working together creates the output. If a component behave differently, the output will change. Therefore, a bad setting can easily ruin your picture. In this post, you will see: How the different components of the Stable …

Using OpenPose with Stable Diffusion

We have just learned about ControlNet. Now, let’s explore the most effective way to control your character based on human pose. OpenPose is a great tool that can detect body keypoint locations in images and video. By integrating OpenPose with Stable Diffusion, we can guide the AI in generating images that match specific poses. In …

Using ControlNet with Stable Diffusion

ControlNet is a neural network that can improve image generation in Stable Diffusion by adding extra conditions. This allows users to have more control over the images generated. Instead of trying out different prompts, the ControlNet models enable users to generate consistent images with just one prompt. In this post, you will learn how to …

Inpainting and Outpainting with Stable Diffusion

Inpainting and outpainting have long been popular and well-studied image processing domains. Traditional approaches to these problems often relied on complex algorithms and deep learning techniques yet still gave inconsistent outputs. However, recent advancements in the form of Stable diffusion have reshaped these domains. Stable diffusion now offers enhanced efficacy in inpainting and outpainting while …