teaser short

RL without TD learning

In this post, I’ll introduce a reinforcement learning (RL) algorithm based on an “alternative” paradigm: divide and conquer. Unlike traditional methods, this algorithm is not based on temporal difference (TD) learning (which has scalability challenges), and scales well to long-horizon tasks. We can do Reinforcement Learning (RL) based on divide and conquer, instead of temporal …

fig1c8u1a3E7 Z23iPso

What exactly does word2vec learn?

What exactly does word2vec learn, and how? Answering this question amounts to understanding representation learning in a minimal yet interesting language modeling task. Despite the fact that word2vec is a well-known precursor to modern language models, for many years, researchers lacked a quantitative and predictive theory describing its learning process. In our new paper, we …

teaserv3 web

Whole-Body Conditioned Egocentric Video Prediction

× Predicting Ego-centric Video from human Actions (PEVA). Given past video frames and an action specifying a desired change in 3D pose, PEVA predicts the next video frame. Our results show that, given the first frame and a sequence of actions, our model can generate videos of atomic actions (a), simulate counterfactuals (b), and support …

Essential Chunking Techniques for Building Better LLM Applications

  Every large language model (LLM) application that retrieves information faces a simple problem: how do you break down a 50-page document into pieces that a model can actually use? So when you’re building a retrieval-augmented generation (RAG) app, before your vector database retrieves anything and your LLM generates responses, your documents need to be …