The journey to a mature asset management system

This blog series discusses the complex tasks energy utility companies face as they shift to holistic grid asset management to manage through the energy transition. Earlier posts in this series addressed the challenges of the energy transition with holistic grid asset management, the integrated asset management platform and data exchange, and merging traditional top-down and …

ML 16686 image001

Introducing automatic training for solutions in Amazon Personalize

Amazon Personalize is excited to announce automatic training for solutions. Solution training is fundamental to maintain the effectiveness of a model and make sure recommendations align with users’ evolving behaviors and preferences. As data patterns and trends change over time, retraining the solution with the latest relevant data enables the model to learn and adapt, …

Getting ready for artificial general intelligence with examples

Imagine a world where machines aren’t confined to pre-programmed tasks but operate with human-like autonomy and competence. A world where computer minds pilot self-driving cars, delve into complex scientific research, provide personalized customer service and even explore the unknown. This is the potential of artificial general intelligence (AGI), a hypothetical technology that may be poised …

ETT ML 16085 image001 1 1024x464 1

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

Migrating to the cloud is an essential step for modern organizations aiming to capitalize on the flexibility and scale of cloud resources. Tools like Terraform and AWS CloudFormation are pivotal for such transitions, offering infrastructure as code (IaC) capabilities that define and manage complex cloud environments with precision. However, despite its benefits, IaC’s learning curve, …

Innovating in patent search: How IPRally leverages AI with Google Kubernetes Engine and Ray

Patent-search platform provider IPRally is growing quickly, servicing global enterprises, IP law firms, and multiple national patent and trademark offices. As the company grows, so do its technology needs. It continues to train its models for greater accuracy, adding 200,000 searchable records for customer access weekly, and mapping new patents. With millions of patent documents …

ML 16189 building the knowledge graph

Uncover hidden connections in unstructured financial data with Amazon Bedrock and Amazon Neptune

In asset management, portfolio managers need to closely monitor companies in their investment universe to identify risks and opportunities, and guide investment decisions. Tracking direct events like earnings reports or credit downgrades is straightforward—you can set up alerts to notify managers of news containing company names. However, detecting second and third-order impacts arising from events …

12A0eG73Iwrebj1tw BWhqGvg

Embracing the Mundane in AI — the need for Specialised AI in Financial Services

Embracing the Mundane in AI — the Need for Specialised AI in Financial Services Why we need more specialised AI which is more accurate for Financial Services tasks, not bigger and more capable headline AI systems. Would you hire Einstein to staff your call centre? (Image created using Dall-E 3) In the rapidly-evolving landscape of artificial intelligence (AI), it’s …

IBM and TechD partner to securely share data and power insights with gen AI

As technology expands, at TechD, we know that the quality of generative AI (gen AI) depends on accurate data sourcing. A reliable and trustworthy data source is essential for sharing information across departments. Through the implementation of generative AI we are able to expand our knowledge to many individuals easily, quickly and efficiently becoming a …

ML 16342 image001

Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks

Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, analyze, visualize, and integrate …