Novel physics-encoded artificial intelligence model helps to learn spatiotemporal dynamics

Prof. Liu Yang from the University of Chinese Academy of Sciences (UCAS), in collaboration with her colleagues from Renmin University of China and Massachusetts Institute of Technology, has proposed a novel network, namely, the physics-encoded recurrent convolutional neural network (PeRCNN), for modeling and discovery of nonlinear spatio-temporal dynamical systems based on sparse and noisy data.