Ferret-UI 2: Mastering Universal User Interface Understanding Across Platforms

Building a generalist model for user interface (UI) understanding is challenging due to various foundational issues, such as platform diversity, resolution variation, and data limitation. In this paper, we introduce Ferret-UI 2, a multimodal large language model (MLLM) designed for universal UI understanding across a wide range of platforms, including iPhone, Android, iPad, Webpage, and …

agent blog 1

Implement human-in-the-loop confirmation with Amazon Bedrock Agents

Agents are revolutionizing how businesses automate complex workflows and decision-making processes. Amazon Bedrock Agents helps you accelerate generative AI application development by orchestrating multi-step tasks. Agents use the reasoning capability of foundation models (FMs) to break down user-requested tasks into multiple steps. In addition, they use the developer-provided instruction to create an orchestration plan and …

image1 jvsf74lmax 1000x1000 1

Delivering an application-centric, AI-powered cloud for developers and operators

Today we’re unveiling new AI capabilities to help cloud developers and operators at every step of the application lifecycle. We are doing this by: Putting applications at the center of your cloud experience, abstracting away the infrastructure complexities of the traditional cloud model. Now you can design, observe, secure, and optimize at the application level, …

image1

Repurposing Protein Folding Models for Generation with Latent Diffusion

PLAID is a multimodal generative model that simultaneously generates protein 1D sequence and 3D structure, by learning the latent space of protein folding models. The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding? In PLAID, we …

Do LLMs Estimate Uncertainty Well in Instruction-Following?

Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs’ instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs’ uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, …

How Netflix Accurately Attributes eBPF Flow Logs

By Cheng Xie, Bryan Shultz, and Christine Xu In a previous blog post, we described how Netflix uses eBPF to capture TCP flow logs at scale for enhanced network insights. In this post, we delve deeper into how Netflix solved a core problem: accurately attributing flow IP addresses to workload identities. A Brief Recap FlowExporter is …

ifood 4

How iFood built a platform to run hundreds of machine learning models with Amazon SageMaker Inference

Headquartered in São Paulo, Brazil, iFood is a national private company and the leader in food-tech in Latin America, processing millions of orders monthly. iFood has stood out for its strategy of incorporating cutting-edge technology into its operations. With the support of AWS, iFood has developed a robust machine learning (ML) inference infrastructure, using services …