Text Summarization with DistillBart Model

This tutorial is in two parts; they are: • Using DistilBart for Summarization • Improving the Summarization Process Let’s start with a fundamental implementation that demonstrates the key concepts of text summarization with DistilBart: import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class TextSummarizer: def __init__(self, model_name=”sshleifer/distilbart-cnn-12-6″): “””Initialize the summarizer with a pre-trained model.

Text Generation with GPT-2 Model

This tutorial is in four parts; they are: • The Core Text Generation Implementation • Contrastive Search: What are the Parameters in Text Generation? • Batch Processing and Padding • Tips for Better Generation Results Let’s start with a basic implementation that demonstrates the fundamental concept.

Auto-Completion Style Text Generation with GPT-2 Model

This post is in six parts; they are: • Traditional vs Neural Approaches • Auto-Complete Architecture • Basic Auto-Complete Implementation • Caching and Batched Input When you type in a word in Google’s search bar, such as “machine”, you may find some additional words are suggested, such as “learning,” to make up “machine learning”.

How to Do Named Entity Recognition (NER) with a BERT Model

This post is in six parts; they are: • The Complexity of NER Systems • The Evolution of NER Technology • BERT’s Revolutionary Approach to NER • Using DistilBERT with Hugging Face’s Pipeline • Using DistilBERT Explicitly with AutoModelForTokenClassification • Best Practices for NER Implementation The challenge of Named Entity Recognition extends far beyond simple …