Handwritten Digit Recognition with LeNet5 Model in PyTorch

A popular demonstration of the capability of deep learning techniques is object recognition in image data. The “hello world” of object recognition for machine learning and deep learning is the MNIST dataset for handwritten digit recognition. In this post, you will discover how to develop a deep learning model to achieve near state-of-the-art performance on …

Building a Convolutional Neural Network in PyTorch

Neural networks are built with layers connected to each other. There are many different kind of layers. For image related applications, you can always find convolutional layers. It is a layer with very few parameters but applied over a large sized input. It is powerful because it can preserve the spatial structure of the image. …

Managing a PyTorch Training Process with Checkpoints and Early Stopping

A large deep learning model can take a long time to train. You lose a lot of work if the training process interrupted in the middle. But sometimes, you actually want to interrupt the training process in the middle because you know going any further would not give you a better model. In this post, …

Understand Model Behavior During Training by Visualizing Metrics

You can learn a lot about neural networks and deep learning models by observing their performance over time during training. For example, if you see the training accuracy went worse with training epochs, you know you have issue with the optimization. Probably your learning rate is too fast. In this post, you will discover how …

Training a PyTorch Model with DataLoader and Dataset

When you build and train a PyTorch deep learning model, you can provide the training data in several different ways. Ultimately, a PyTorch model works like a function that takes a PyTorch tensor and returns you another tensor. You have a lot of freedom in how to get the input tensors. Probably the easiest is …

Using Learning Rate Schedule in PyTorch Training

Training a neural network or large deep learning model is a difficult optimization task. The classical algorithm to train neural networks is called stochastic gradient descent. It has been well established that you can achieve increased performance and faster training on some problems by using a learning rate that changes during training. In this post, …

Using Dropout Regularization in PyTorch Models

Dropout is a simple and powerful regularization technique for neural networks and deep learning models. In this post, you will discover the Dropout regularization technique and how to apply it to your models in PyTorch models. After reading this post, you will know: How the Dropout regularization technique works How to use Dropout on your …

Loss Functions in PyTorch Models

The loss metric is very important for neural networks. As all machine learning models are one optimization problem or another, the loss is the objective function to minimize. In neural networks, the optimization is done with gradient descent and backpropagation. But what are loss functions, and how are they affecting your neural networks? In this …