SageMaker Clarify Blog

Explain medical decisions in clinical settings using Amazon SageMaker Clarify

Explainability of machine learning (ML) models used in the medical domain is becoming increasingly important because models need to be explained from a number of perspectives in order to gain adoption. These perspectives range from medical, technological, legal, and the most important perspective—the patient’s. Models developed on text in the medical domain have become accurate …

1. demo1

What is Multimodal Search: “LLMs with vision” change businesses

What if large language models (LLMs) had “vision”, the ability to understand the meaning of images? Just like we have seen the innovation with LLMs with chatbots and text data, the ability would make another huge impact on businesses by letting LLMs look at and organize millions of images in enterprise IT systems. In this …

NVIDIA Chief Scientist Bill Dally to Keynote at Hot Chips

Bill Dally — one of the world’s foremost computer scientists and head of NVIDIA’s research efforts — will describe the forces driving accelerated computing and AI in his keynote address at Hot Chips, an annual gathering of leading processor and system architects. Dally will detail advances in GPU silicon, systems and software that are delivering …

Applying cyber resilience to DORA solutions

The Digital Operational Resilience Act, or DORA, is a European Union (EU) regulation that created a binding, comprehensive information and communication technology (ICT) risk-management framework for the EU financial sector. DORA establishes technical standards that financial entities and their critical third-party technology service providers must implement in their ICT systems by January 17, 2025. DORA applies to all …

AVIS

Autonomous visual information seeking with large language models

Posted by Ziniu Hu, Student Researcher, and Alireza Fathi, Research Scientist, Google Research, Perception Team There has been great progress towards adapting large language models (LLMs) to accommodate multimodal inputs for tasks including image captioning, visual question answering (VQA), and open vocabulary recognition. Despite such achievements, current state-of-the-art visual language models (VLMs) perform inadequately on …

1 image.max 1000x1000 1

Implementing MLOps tools and processes for supply chain science at Wayfair

In our previous blog post, we presented Wayfair’s MLOps vision and how we implemented it within our Data Science & Machine Learning organization using Vertex AI, supported by tooling that we built in-house and state-of-the-art MLOps processes. We shared our MLOps reference architecture that includes a shared Python library that we built to interact with …

AVA Discovery View: Surfacing Authentic Moments

By: Hamid Shahid, Laura Johnson, Tiffany Low Synopsis At Netflix, we have created millions of artwork to represent our titles. Each artwork tells a story about the title it represents. From our testing on promotional assets, we know which of these assets have performed well and which ones haven’t. Through this, our teams have developed an …

Unlock true Kubernetes cost savings without losing precious sleep over performance risks

The race to innovate has likely left you (and many, many others) with unexpectedly high cloud bills and/or underutilized resources. In fact, according to Flexera’s 2023 State of the Cloud report, for the first time in a decade, “managing cloud spend” (82%) surpassed “security” (79%) to become the number one challenge facing organizations across the board. We …

CHITA2520hero

Neural network pruning with combinatorial optimization

Posted by Hussein Hazimeh, Research Scientist, Athena Team, and Riade Benbaki, Graduate Student at MIT Modern neural networks have achieved impressive performance across a variety of applications, such as language, mathematical reasoning, and vision. However, these networks often use large architectures that require lots of computational resources. This can make it impractical to serve such …

ML 14589 Solution overview 2

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker, a fully managed ML service, with requirements to develop features offline in a code …