ML 18212 nl2sql problem scope alt res 279x300 1

Enterprise-grade natural language to SQL generation using LLMs: Balancing accuracy, latency, and scale

This blog post is co-written with Renuka Kumar and Thomas Matthew from Cisco. Enterprise data by its very nature spans diverse data domains, such as security, finance, product, and HR. Data across these domains is often maintained across disparate data environments (such as Amazon Aurora, Oracle, and Teradata), with each managing hundreds or perhaps thousands …

Data Canvas Assistant at Work

Accelerate your data-to-insights journey with enhanced BigQuery data canvas

In today’s data-driven world, the ability to extract meaningful insights quickly is paramount. Yet, for many, the journey from raw data to actionable intelligence is fraught with challenges. Complex SQL queries, time-consuming iterative analyses, and the gap between technical and non-technical users often hinder progress. BigQuery data canvas is a visual workspace designed to democratize …

ML 18239 architecture 1 1024x896 1

Build an AI-powered document processing platform with open source NER model and LLM on Amazon SageMaker

Archival data in research institutions and national laboratories represents a vast repository of historical knowledge, yet much of it remains inaccessible due to factors like limited metadata and inconsistent labeling. Traditional keyword-based search mechanisms are often insufficient for locating relevant documents efficiently, requiring extensive manual review to extract meaningful insights. To address these challenges, a …

1 Rg2TCpJmax 1000x1000 1

Going from requirements to prototype with Gemini Code Assist

Imagine this common scenario: you have a detailed product requirements document for your next project. Instead of reading the whole document and manually starting to code (or defining test cases or API specifications) to implement the required functions, you want to see how AI can shorten your path from the requirements document to a working …

ml 18766 image001

Supercharge your LLM performance with Amazon SageMaker Large Model Inference container v15

Today, we’re excited to announce the launch of Amazon SageMaker Large Model Inference (LMI) container v15, powered by vLLM 0.8.4 with support for the vLLM V1 engine. This version now supports the latest open-source models, such as Meta’s Llama 4 models Scout and Maverick, Google’s Gemma 3, Alibaba’s Qwen, Mistral AI, DeepSeek-R, and many more. …

Google Cloud Database and LangChain integrations now support Go, Java, and JavaScript

Last year, Google Cloud and LangChain announced integrations that give generative AI developers access to a suite of LangChain Python packages. This allowed application developers to leverage Google Cloud’s database portfolio in their gen AI applications to drive the most value from their private data. Today, we are expanding language support for our integrations to …

Apple Machine Learning Research at ICLR 2025

Apple researchers are advancing machine learning (ML) and AI through fundamental research that improves the world’s understanding of this technology and helps to redefine what is possible with it. To support the broader research community and help accelerate progress in this field, we share much of our research through publications, open source resources, and engagement …

apo1

Amazon Bedrock Prompt Optimization Drives LLM Applications Innovation for Yuewen Group

Yuewen Group is a global leader in online literature and IP operations. Through its overseas platform WebNovel, it has attracted about 260 million users in over 200 countries and regions, promoting Chinese web literature globally. The company also adapts quality web novels into films, animations for international markets, expanding the global influence of Chinese culture. …

FastVLM: Efficient Vision encoding for Vision Language Models

Scaling the input image resolution is essential for enhancing the performance of Vision Language Models (VLMs), particularly in text-rich image understanding tasks. However, popular visual encoders such as ViTs become inefficient at high resolutions due to the large number of tokens and high encoding latency. At different operational resolutions, the vision encoder of a VLM …

1 SolutionsOverview FinOps AmazonBedrock MultiAgent

Build a FinOps agent using Amazon Bedrock with multi-agent capability and Amazon Nova as the foundation model

AI agents are revolutionizing how businesses enhance their operational capabilities and enterprise applications. By enabling natural language interactions, these agents provide customers with a streamlined, personalized experience. Amazon Bedrock Agents uses the capabilities of foundation models (FMs), combining them with APIs and data to process user requests, gather information, and execute specific tasks effectively. The …